How Science Fails

If you ask a scientist a question about the philosophy of science, there’s a good chance the answer will feature just one or two philosophers. The name of the Austrian-born British philosopher Karl Popper (1902-94) will likely arise in the context of his principle of falsifiability, the ‘demarcation criterion’ that many scientists still use to distinguish science from non-science. A theory is considered scientific only if it makes predictions that can – in principle – be proved wrong. So astrology is not a science because its predictions are typically so vague that they can’t be falsified: they are irrefutable. This is the basis for Popper’s take on the scientific method. Scientists make a series of creative conjectures which they then attempt to refute. They make progress by refining their hypotheses in light of these refutations, and the process begins again.

Meanwhile, the name of the American philosopher Thomas Kuhn (1922-96) will likely be mentioned in the context of his theory of scientific revolutions. In the normal science of every day, puzzles are solved and discoveries are made within a network of accepted foundational theories, or what Kuhn called a paradigm, which is accepted to be irrefutable. Logically, if scientists stopped what they were doing every five minutes, and sought to falsify the basis on which they make their predictions and devise and perform tests, then they wouldn’t get much done. Contrast this with revolutionary science, in which all bets are off and paradigms shift, in a process that Kuhn likened to religious conversion or political revolution. Kuhn argued that such revolutionary scientific change involves not just a change in laws, entities and their mathematical descriptions, but also in the standards by which scientists judge the adequacy of theoretical explanations.

Read Full Article »


Comment
Show comments Hide Comments


Related Articles